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ABSTRACT

In this paper, we apply a state-of-the-art deep learning model to understand and predict
dynamic patterns in mutual fund returns. A long-short portfolio based on the model’s pre-
diction generates a 2.8% annualized Carhart 4-factor alpha. This abnormal performance is
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substantially by increasing the R-squared by more than 25% in a predictive regression that
includes other fund skill measures as well as fund and time fixed effects. The model’s predic-
tive power derives from its ability in capturing fund skill embedded in dynamic strategies.
We construct model-based conditional skill measures that depend on the inferred informa-
tiveness of macroeconomic and fundamental variables. Such measures are predictive of fund
performance in future periods when the conditioning variables are highly informative. The
conditional performance of these measures are also persistent. Overall, our results suggest
that mutual fund have various specific skills that generate superior returns when the time is
right.
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“History doesn’t repeat itself, but it often rhymes.”

— Mark Twain

I. Introduction

History has a tendency of reiterating itself, albeit usually in somewhat different forms.

For example, there are striking similarities between the 2020s and the “roaring” 1920s, both

recovering from a pandemic and experiencing a technology growth burst, notwithstanding

important differences between the century-apart eras.1 In the mutual fund industry, fund

managers have also noted recurring patterns in the market and economy that call for certain

strategies, which can generate similar future fund returns.2 These observations relate to

the findings in the literature that most mutual funds do not generate superior performance

(e.g., Fama and French, 2010, Barras, Scaillet, and Wermers, 2010) and that past fund

performance is not a dependable predictor of future performance. Mutual funds may adopt

different and dynamic strategies in different economic states, which can be difficult for linear

models to capture. In this paper, we aim to answer the following questions: Can we learn

dynamic patterns in fund returns as related to macroeconomic and fund conditions? Would

such patterns be helpful to predict future fund performance? What can we learn from such

patterns about fund skill and strategies?

Given the dynamic and complex nature of potential patterns, traditional economet-

ric models are not well-suited to answer the above questions. In this study, we apply a

state-of-the-art deep learning model for time-series predictions to understand and predict

dynamic patterns in mutual fund returns. Our model (the Temporal Fusion Transform-

ers model) has several unique features that go beyond the classical out-of-the-box machine

learning models, such as decision trees or standard neural networks. First, the model is a

1“‘Roaring’? Not so fast,” Cristina Lindblad, February 1, 2021, Bloomberg Businessweek.
2See, for example, The Most Important Thing: Uncommon Sense for the Thoughtful Investor, 2011,

Howard Marks, Columbia Business School Publishing, “Déjà vu all over again,” January 10, 2019, Andrew
Pastor, EdgePoint Investment Group, and “ARK Invest’s Wood expects market rotation back to growth
stocks,” September 14, 2021, David Randall, Reuters.
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sequence-to-sequence model, i.e., it predicts an entire future time-series of mutual fund re-

turns simultaneously, rather than just a single future return. Second, the model can handle

different types of time-series variables well. Specifically, the model has separate treatments

for dynamic, deterministic, and static variables3 that utilize the information contained in

these variables efficiently. Third, the model assigns time- and fund-varying informativeness

weights to different input variables, unlike traditional machine learning models that assign

constant weights to them. This allows the model to adapt dynamically and focus more on

the most informative variables for specific time periods and funds. These informativeness

weights can further help to interpret the time-varying patterns in mutual fund performance.

The model takes as inputs several classes of variables, including past fund returns,

macroeconomic and market variables, and fund characteristics such as fund size, flow, and

fees. The dependent or target variables of the model include the time-series of the future

12 monthly (risk-adjusted) returns of funds. The model can capture future return patterns

well. Top mutual funds predicted by the model outperform bottom funds by an annualized

Fama-French-Carhart four-factor alpha of 2.8%, significantly larger than those generated by

OLS or more standard machine learning models. This outperformance is also persistent and

remains statistically and economically significant for up to four years.

To investigate whether the model generates a new measure of fund skill, we regress actual

fund alphas on the model’s predicted alphas and control for historical fund performance,

fund characteristics, and other measures of fund skill such as the return gap. We find that

the model’s predicted alphas improves predictive power even in the most comprehensive

regressions, increasing the adjusted R-squared by more than 25%. The prediction power

persists with fund and time fixed effects, suggesting that the model can identify time-varying

fund skill.

We next try to dig deeper and understand what we can learn from the model. We hy-

3Dynamic variables are time-varying variables that are subject to random variations each period. De-
terministic variables are variables that follow a determined path (e.g., fund age). Static variables are not
time-varying.
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pothesize that the model captures dynamic features of mutual fund strategies. For example,

mutual funds can adopt “bottom-up” strategies that are based on analyzing company fun-

damentals and “top-down” approaches that adjust trading strategies with macroeconomic

conditions (e.g., Moy and Griffeth, 1995). We first find several pieces of evidence consis-

tent with funds employing such strategies. First, we consider the earnings call cycles of

companies, which provide periodic information to the market. We find that the model puts

the most weight on mutual fund returns in the month following earnings calls of companies

held by the fund. In other words, the model can detect mutual fund returns that are most

sensitive to fundamental information. Therefore, funds’ use of fundamental information can

be important for predicting mutual fund performance and understanding their skill. Second,

we also find macroeconomic conditions and past return patterns to be both important de-

terminants of the model’s predictive power. For example, historical fund performance and

macroeconomic variables are the most important features in the model. Furthermore, the

model puts more weight on information from crisis periods, during which fund returns and

strategies may be closely related to the abrupt changes in economic conditions.

The interpretability of the model allows us to further analyze funds’ specific skills. For

each predictive variable (e.g., market return, inflation, or fund’s own past return), we con-

struct a model-based conditional skill measure that represent the average abnormal returns

of the fund when the predictive variable is most informative. To the extent that the model

provides time- and fund-varying informativeness (i.e., variable importance) measures for the

conditioning variables, the model-based conditional performance measures capture fund skills

that are specific to macroeconomic and firm conditions. We find the conditional skill mea-

sures are predictive of fund performance in future periods when the conditioning variables

are more informative. For example, funds with high “term spread skill” has an annualized

abnormal return of 7.68% in future periods when the term spread variable is more infor-

mative, which is 13.87% higher than the abnormal return of funds with low term spread

skill.
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The conditional variables can be separated into two groups: 1) macroeconomic variables,

including market return, inflation, term spread, and default spread, and 2) fundamental

variables, including fund past returns and month-of-year.4 We find conditional skills to

predict future performance for these two groups of variables. Furthermore, the performance

of these measures are persistent up to four years. The persistence of these measures also

provide an explanation of the persistence of our main skill measure, which integrates all

specific skills through the model. We also find that the specific skill measures to decline for

the largest mutual funds, consistent with the diminishing return-to-scale hypotheses in Berk

and Green (2004).

Our results suggest that firms do possess skills that are specific to macroeconomic and

firm conditions. We note that such skills are broadly related to the market timing and stock

selection skills analyzed in the mutual fund literature but are more specific and include more

dimensions. For example, the different conditional skill measures are not highly correlated

and some are even weakly negatively correlated. Thanks to our model’s unique features, the

model can quantify and capture the different specific skills of mutual funds.

This paper contributes to several strands of literature. First, the paper complements

a rapidly growing literature that applies machine learning methods in financial economics

(e.g., Cong, Tang, Wang, and Zhang, 2020a, Cong, Tang, Wang, and Zhang, 2020b, Feng,

Giglio, and Xiu, 2020, Freyberger, Neuhierl, and Weber, 2020, Gu, Kelly, and Xiu, 2020,

Gu, Kelly, and Xiu, 2021, and Chinco, Neuhierl, and Weber, 2021). Our paper is the first

to introduce a sequence-to-sequence machine learning model that is particularly suitable for

capturing dynamic time-series patterns. The model’s ability to handle different types of

time-varying inputs and flexibility in assigning different weights according to fund and time

not only generates superior predictive performance, but also allows intuitive interpretation

4We call the second group of variables “fundamental variables” because they are not apparently related
to time-varying economic conditions. These fundamental variables may nonetheless provide certain macroe-
conomic information to the model. However, such information is either orthogonal to those that are already
captured by the macroeconomic variables, or represents interactions of fundamental and macroeconomic
variables.
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of the model’s power. We expect this type of models can be used to address more general

time-series problems in finance beyond the study of mutual funds.

Second, the paper helps to address questions about the persistence of mutual fund per-

formance. The classical literature (e.g., Jensen, 1968, Elton, Gruber, Das, and Hlavka, 1993,

Carhart, 1997, Busse, Goyal, and Wahal, 2010, and Fama and French, 2010) do not find

persistence in mutual fund performance. Our paper finds that mutual funds do have pre-

dictable performance patterns. However, such patterns can be highly nonlinear and depend

on dynamic fund strategies and macroeconomic and information environments. While such

patterns are detectable by our model, it may be difficult to identify using in traditional

econometric models. This partially answers the lack of performance persistence found in the

literature.

The paper is also related to the recent mutual fund skill literature that identifies mu-

tual fund skills through different angles (Carhart, 1997; Kacperczyk, Sialm, and Zheng,

2008; Huang, Sialm, and Zhang, 2011; Amihud and Goyenko, 2013; Hunter, Kandel, Kandel,

and Wermers, 2014). Our model contributes to this literature by providing a new measure

of time-varying mutual fund skill that can be measured based only on past performance,

macroeconomic conditions, and fund characteristics.

Finally, our paper is related to several recent papers on applying machine learning meth-

ods to study mutual funds (e.g., Li and Rossi, 2020, Zhang, 2021). Our paper differs from

these papers by first introducing a sequence-to-sequence model to capture dynamic fund

performance patterns. Furthermore, the rich and flexible features of the model capture both

patterns from bottom-up and top-down strategies of mutual funds and offer a more intuitive

interpretation of the source of the model’s predictive power.
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II. Data, Variable Construction, and Sample Overview

II.A. Data sources

We obtain data used in this study from multiple sources. We take mutual fund re-

turns, total net assets (TNA), expense ratio, turnover ratio, investment objective, and other

fund characteristics from the Center for Research in Security Prices (CRSP) Survivorship

Bias-Free Mutual Fund database. We obtain mutual fund portfolio holdings from the Thom-

son Reuters Mutual Fund Holdings (s12) database. We merge these two databases via the

MFLINKS tables provided by Wharton Research Data Services (WRDS). Finally, macroe-

conomic data are obtained from Federal Reserve Economic Data (FRED).

Our study is focused on active U.S. equity funds from January 1990 to December 2019.5

We follow the conventional selection criteria in Kacperczyk, Sialm, and Zheng (2008) to

identify domestic equity funds.6 We further exclude ETFs, fixed income, international,

money market, sector, index, target-date, and balanced funds.7 To mitigate omission bias

(Elton, Gruber, and Blake, 2001) and incubation bias (Evans, 2010), we exclude observations

prior to the first offer dates of funds, those for which the fund names are missing in the CRSP

MF database, and those for which the fund’s TNA is below $5 million. Our final sample

comprises 3,717 unique funds, and 500,113 fund-month observations.

5We set our sample starting from 1990 because some of the macroeconomic variables such as VIX and
Oil Price become available after 1990.

6Details of the selection criteria are available at Kacperczyk, Sialm, and Zheng (2008), Appendix A, page
2412.

7Similar to Jones and Mo (2021), we identify and remove index funds both by CRSP index fund flag
and by searching the fundsâ names with the key words Exchange-traded, Etf, Dfa, Index, Inde, Indx, Inx,
Idx, Dow Jones, Ishare, S&P, 500, Wilshire, Russell, Russ, and MSCI. We exclude target-date funds by
searching the fund names with the key words 2055, 2050, 2045, 2040, 2035, 2030, 2025, 2020, 2015, 2010,
2005, and Target.
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II.B. Variable Construction

B1. Fund Performance and Characteristics

To measure performance, we compute alphas following based on rolling window estimates

of factor betas. Specifically, for each fund-month observation, we use the previous 24 months

to estimate the betas on the CRSP value-weighted excess market return (Mktrf), size (SMB),

book-to-market (HML), and momentum (UMD) factors from Ken French’s website. We then

use these betas to risk-adjust the current month’s excess return.

Since the CRSP Mutual Fund database lists multiple share classes separately, we aggre-

gate all share classes at the fund level. Specifically, TNA is the aggregate total net assets

($mm) across all share classes of a fund. Cash holdings, turnover ratio (Turnover), expense

ratio (Expense), and management fees are the TNA-weighted average across all fund share

classes and scaled to percentage points. Manager tenure is the number of years since a port-

folio manager is hired; if there are multiple managers for a fund, the longest tenure is used.

Load is the dummy variable that equals one if at least one share class has load, and zero

otherwise.

We follow the extant literature to identify fund managers’ unobservable skill by the

return gap measure of . The monthly return gap is the difference between a fund’s realized

gross return and the hypothetical return on its most recently disclosed portfolio holdings.

We define Return Gap as the monthly average return gap over previous 12 months.

B2. Macroeconomic and Market Variables

We obtain a collection of macroeconomic variables that previous studies have shown

to be useful for predicting security returns and risks over time. The variables include (1)

Industrial Production Index, (2) Consumer Price Index, (3) Crude Oil Price (WTI), (4) 3-

month treasury bill rate, (5) Term spread of 10-year treasury and 3-month treasury bill, (6)

Default spread of Baa and Aaa corporate bond yields, and 7) NBER recession indicators.
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Industry Production Index and Consumer Price Index are measured as the percentage change

from a year ago, and the other variables except NBER recession indicators are measured as

the percentage change from the previous month.

We also collect a series of market variables that can potentially affect fund manager’s

investment decisions. We include the percentage change of the CBOE volatility index, the

CRSP total-return value-weighted index return, and the S&P500 index return. We also

include the factor returns of two widely used factor models: SMB, HML, RMW, CMA from

the Fama and French five-factor model and R_ME, R_IA, R_ROE, R_EG from the Hou,

Xue, and Zhang (2015) q-factor model factor model.

We list all variables serving as inputs into the machine learning models, their definitions,

and sources in Appendix A. The summary statistics are reported in Table 1. All variables are

constructed monthly using information available at the previous month-end. All potentially

unbounded variables are winsorized at the 1% extremes.

[Insert Table 1 Here]

III. Methodology

III.A. Forecasting in Finance

Traditionally, studies in finance have approached the forecasting problem via predictive

regression models. In general, these studies generate various theoretically or intuitively

motivated variables that can predict the target variable in the next period. For example,

several single-period predictors such as return gap (Kacperczyk, Sialm, and Zheng, 2008),

active share (Cremers and Petajisto, 2009), and risk shifting (Huang, Sialm, and Zhang, 2011)

are proposed to predict the next-period mutual fund performance. However, such prediction

models typically do not utilize the entire paths of history to describe the future, partly

because the linear regression models cannot handle a large number of potentially correlated

independent variables well. In contrast, time-series models such as the ARIMA models (Box,
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Jenkins, and MacGregor, 1974) and the exponential smoothing model (Hyndman, Koehler,

Ord, and Snyder, 2008) offer a principled framework for modeling and learning time-series

patterns such as trend and seasonality. However, such models usually impose structural

assumptions and are mainly suitable in the applications where the structure of the time

series is well understood.

Deep neural networks (DNNs), or deep learning models, have gained popularity in time-

series forecasting and demonstrated strong performance improvements over traditional time-

series models (e.g., Rangapuram, Seeger, Gasthaus, Stella, Wang, and Januschowski, 2018,

Salinas, Flunkert, Gasthaus, and Januschowski, 2020, Wen, Torkkola, Narayanaswamy, and

Madeka, 2017). With their capability to extract higher-order features, deep learning models

can identify complex patterns within and across time series, and they usually require little or

no structural assumptions about the time series. However, the basic DNN architectures are

subject to several limitations when applied to financial data. The biggest challenge is that the

financial data have small sizes and weak signal-to-noise ratio (Israel, Kelly, and Moskowitz,

2020). As a result, noisy or irrelevant inputs could dramatically affect the results of machine

learning models. In addition, these models often fail to consider the heterogeneity of inputs

by simply concatenating static inputs with other time-dependent features in the prediction.

Finally, most current architectures are “black-box” models where forecasts are controlled

by complex nonlinear interactions between many parameters. This makes it difficult to

explain how models arrive at their predictions. A better design of the deep learning models

is needed to harness the unique characteristics of financial data and interpret results of the

model forecasts.

III.B. Temporal Fusion Transformers Model

In our paper, we adopt the Temporal Fusion Transformer (TFT) model, one of the most

recent innovations of neural network architecture introduced by Google in Lim, Arik, Loeff,

and Pfister (2019). The TFT model developed several innovative components (shown in
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Figure 1) to efficiently build feature representations for different data types while enabling

new forms of interpretability. The model uniqueness is fivefold. First, in contrast to one-

step-ahead predictions in most prediction models, the TFT model simultaneously generates

predictions at multiple future time periods, which allows us access to the evolution of mutual

fund performance across the entire desire path. Second, the model includes a gating module

(Gated Residual Network) to minimize the contributions of irrelevant inputs. This innovative

module is especially helpful in our prediction framework where the precise relationships

among historical time-series variables and the target variable are often unknown in advance.

For example, some macroeconomic variables may have negligible influences on mutual fund

performance, while others may have either linear and non-linear relationships with it. The

gating module allows the model to skip over any unused variables and provides the flexibility

to apply nonlinear processing only where needed.

[Insert Figure 1 Here]

Third, the TFT model is designed to provide instance-wise variable selection using vari-

able selection networks. For example, the model can endogenously select and laser-focus on

the specific variables that are particularly important for each fund-year prediction, removing

unnecessary noisy inputs for that instance and improving prediction performance. Fourth,

the TFT model employs a sequence-to-sequence neural-network layer, adapted from lan-

guage translation models, to learn both long- and short-term temporal relationships. This

temporal layer allows the model to incorporate information from different types of inputs

(targets, dynamic variables, deterministic variables, and statics variables). Finally, to open

the “black bo” of forecasts based on complex nonlinear interactions, the TFT model includes

a self-attention layer in the neural network to pick up long-range dependencies that may be

challenging for standard deep learning architectures to learn. Information from this attention

layer can be further exported to enhance interpretability.
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III.C. Sample Splitting and Tuning

In preparing the data sample and training the model, we follow the most common ap-

proach in the forecast evaluation literature (see, e.g., West, 2006). Specifically, we divide

our data into three samples: the training, validation, and testing samples. We first use the

training sample to estimate the model subject to a set of hyperparameters. We then use the

validation sample to tune the hyperparameters in the following two steps: (1) We construct

forecasts using the data from the validation sample based on the estimated model from the

training sample; (2) we conduct a grid search of hyperparameters by re-estimating the model

from the training sample until the objective function for the validation sample is optimized.

The above cross-validation process could help produce reliable performance in out-of-sample

tests and avoid overfitting the model to the training sample. Finally, we use the testing

sample, which is used for neither estimation nor cross-validation processes, to evaluate a

model’s predictive performance.

III.D. Model Evaluation

To assess the predictive performance of fund alpha forecasts, we follow the method

based on out-of-sample R-squared as Gu, Kelly, Xiu (2020). Specifically, we calculate the

out-of-sample R2 as:

R2
OOS = 1 −

∑
(i,t)∈τOOS

(ri,t+1 − r̂i,t+1)2∑
(i,t)∈τOOS

r2
i,t+1

, (1)

where i and t indicate the fund and month, and TOOS indicates that R2 is only assessed

on the out-of-sample that never use in model estimation or tuning. R2
OOS pools prediction

errors across funds and over time into a panel-level assessment of each model. Since the

denominator is the sum of squared excess returns without demeaning, the above measure

represents the proportional reduction in mean squared forecast error (MSFE) of the model

relative to the benchmark of a naive forecast of zero.
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III.E. Interpretable Variance Importance and Attention

The TFT model is designed to provide interpretable variable selection for each data type,

including dynamics inputs, deterministic inputs, and static inputs . Below we list several

key outputs from the TFT model that will be important for interpreting our results later.

Specifically, the variable selection weights of historical inputs are calculated as:

wi,t = Softmax(f(ε1, ..., εj, cs)), (2)

where wi,t is the vector of variable selection weights of each historical variables j(ε1, ε2, ..., εk)

for fund i at time t, cs is the vector of all statics inputs, and f is a gating module to integrate

multiple variables.8 The softmax function is a generalization of the logistic function that

rescale inputs into a probability vector with the sum of all the probabilities equal to one.

These weights can be exported after the model is estimated, which allows us to understand

the importance of each variable j of fund i at time t. In the next step, the inputs are

aggregated into the next layer based on the weights of each variable :

Vi,t =
k∑

j=1
εi,j,twi,j,t (3)

In additional to interpretable variable importance, the TFT model employs a self-

attention mechanism to learn short- and long-term relationships across different time steps,

the attention is calculated as:

Ai,t = g(Vi,t), (4)

where g is a function that encoder aggregated features Vi,t into a sequence-to-sequence layer

followed by attention architectures. The attention can be exported to provide information

that which period will be assigned more attention, hence more important over the prediction

history.

8For static variable, the context vector cs is omitted.
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IV. Predicting Mutual Fund Performance using Machine Learning

Models

We consider the following machine learning model that predicts a sequence of mutual

fund alphas for T consecutive periods in the future:

αi,t = h(It−1) + ϵi,t, (5)

where αi,t = (αi,t+1, ..., αi,t+T ) is the vector of fund alphas for the future T periods after pe-

riod t, It−1 is the public information set available at t−1, and h(It−1) = (hi,t+1(It−1), ..., hi,t+T (It−1))

is a vector-valued function that approximates the expected future fund alphas. The predic-

tion horizon T is the length of the sequence to be predicted. In what follows, we will use “tar-

get variable” or “predicted variabl” to refer to the dependent variable in the above estimation,

i.e., fund alphas. We use the historical values of a group of variables {zi,s : t−T ∗ ≤ s < t} to

represent the information set It−1. The estimation horizon T ∗ represents the maximum lenth

of time we go back and consider historical values of variables. We will refer to these variables

as “predictors,” “features,” “covariates,” or “independent variables.” The predictorsZi,t con-

sist of three types of variables: (1) dynamic inputs that covary with the target variables over

time (e.g., macroeconomic variables), (2) static inputs for which the content is constant over

time (e.g., fund style), (3) deterministic inputs that represent characteristics that vary with

time with values known in advance (e.g., fund age).

We include a collection of predictive variables that could potentially influence our target

variables. For dynamic inputs, we select fund characteristics (fund flow, fund TNA, cash

holdings, and equity holdings), macroeconomic variables (industrial production, inflation,

oil price, risk-free rate, default spread, and term spread), and market-related variables (SP

500 return, VIX, value-weighted index return, NBER crisis dummy, factor returns from

Fama-French five factors model and Hou, Xue, and Zhang (2015) q-factor model, and the

momentum factor return). For static inputs, we add fund style, load, and management fee
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. For deterministic inputs, we choose the upcoming month of year and manager tenure. To

improve the model efficiency and prediction accuracy, all the unbounded inputs and target

variables are standardized by month (to have a mean of zero and standard deviation of 1

for each month) before being used in the model. As discussed earlier, due to their different

natures, the dynamic, static, and deterministic variables are separately input and treated in

our main machine learning model (the TFT model).

Following the machine learning literature, we divide our 30 years of data into 20 years of

training and validation sample (1990-2009) and 10 years of testing sample (2010-2019). For

the first 20 years, we randomly select 80% of the funds and include their observations in the

training sample and the observations of the remaining 20% of funds in the validation sample.

To study the return pattern over a prolonged period and reduce the intensive computational

costs of the training process, we train and validate a fixed machine learning model for the

first 20 years and examine the out-of-sample predictions for the last 10 years. We choose

the estimation horizon to be 72 months and the prediction horizon to be 12 months. Hence,

we require funds to have at least 84 months of observation in the training, validation, and

testing samples. To further reduce the model’s noise, we run the same models for 20 times

and ensemble the TFT models by taking the mean of their predictions.

IV.A. Performance Comparison

To evaluate the performance of the TFT model, we compare multiple classes of models,

which include generalized linear models (OLS regression, Lasso regression, Ridge regression,

and Elastic Net), tree-based models (Decision Tree, Ada Boost, and Random Forest), and

feed-forward neural networks with two and three layers (NN2, NN3), with the TFT model.

Different from the TFT model, the other machine learning models considered here do not

treat dynamic, static, and deterministic variables separately. Therefore, we simply concate-

nate all covariates over the full estimation horizon (72 months) as inputs for these models.

The total number of covariates is 72 × (1 + 33) = 2, 448. In addition, as all models other
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than TFT do not have multi-horizon features, we use the average of the future 12-month

returns as the target variable.

Table 2 presents the comparison of the out-of-sample R2 among different machine learn-

ing techniques, progressing from the simpler to the more sophisticated models. It may not

be surprising that the linear OLS model generates close-to-zero prediction performance with

an R2 of 0.02%, because the model cannot handle nonlinear relationships among variables as

well as complex intertemporal patterns of variables. The generalized linear models, such as

the Ridge model, allows selection of the most important features in the regression. However,

the performance of the Ridge model does not improve much over the OLS model, indicating

highly nonlinear relationships among different features.

[Insert Table 2 Here]

The decision tree model is designed to capture nonlinear interactions. The single decision

tree model, however, only generates an R2 of 0.004%, potentially due to its large variance,

which contributes to poor out-of-sample performance. Ada Boost and Random Forest models

are ensembles of decision trees that aggregate information from a number of weak models to

form a strong model. Both models produce an improved performance with R2 of 0.05% and

0.04%, respectively. Neural network models incorporate complex predictor interactions and

further improve the R2 to 0.07% (two-layer feed-forward neural network). Finally, the TFT

model, equipped with the unique traits discussed in Section X, produces a far superior R2

of 0.35%.

Next, we further compare our prediction of the TFT model with other traditional pre-

dictors of mutual fund alphas. We define Predicted Alpha as the predicted fund alpha by the

TFT model for a given fund and month. We estimate the following panel regression, indexed

by fund(i)-month(t), with both year and fund fixed effects, in addition to a host of control

variables including log(TNA), Fund Flow, Cash Holdings, Expense Ratio, Management Fee,
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and Turnover Ratio:

Alphai,t+1 = βAlpha Predictori,t + γControli,year + αi + αt + ϵi,t (6)

Table 3 presents the results. The coefficient of Predicted Alpha is statistically significant at

the 1% levels in all settings, even after controlling for historical alpha and return gap, sug-

gesting that the information captured from the TFT model is independent of the traditional

measures.

In addition, we also calculate the contribution to adjusted R2 by Predicted Alpha as

the ratio of the increase in adjusted R2 from adding Predicted Alpha (to a regression model

without it) to the total adjusted R2 for the model including Predicted Alpha. The results

show that Predicted Alpha consistently contributes 20% of the model’s predictive power,

even in the most comprehensive model that include all control variables and fixed effects.

[Insert Table 3 Here]

IV.B. Portfolio Performance and Persistence

The results from predictive regressions suggest that the TFT model can help to predict

future fund performance. To obtain a more concrete understanding and quantify the value

of the model, we next adopt a portfolio approach and identify skilled and unskilled funds.

Specifically, we first create the model-predicted future monthly alphas in the next 12 months,

t + 1, ..., t + 12, for all fund(i)-year(t) observations. We then sort all funds into deciles

based on the predicted alphas for each month t + i for i = 1, ..., 12, and construct equally

weighted decile portfolios. The decile portfolios are rebalanced each month. We calculate the

average monthly Fama-French 4-factor alpha of each decile portfolio over the next 12 months

(t + 1, ..., t + 12). Table 4, Column 1 presents the performance of the decile portfolios. The

top minus bottom portfolio generates a monthly alpha of 23.24 basis points or an annualized

alpha of 2.8%, which is statistically significant at the 1% level.
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We next investigate whether the superior performance is persistent. For this purpose, we

maintain the monthly portfolio weights so that the same funds are selected in the portfolio

for the same month over the next five years. The abnormal returns of the top minus bottom

portfolio remain both economically and statistically significant for up to four years (with a

monthly alpha of 22.21 basis points in the fourth year), suggesting that the model captures

persistent skilled funds.

[Insert Table 4 Here]

V. Variable Importance and Conditional Performance Persistence

V.A. Variable Importance

While the performance of the TFT model is validated in Section IV, in this section, we

zoom into the model to understand the source of the predictive power.

The TFT model allows us to open the model black box with its explainable output – vari-

able importance measures from the variable selection network (described in Section III.E).

The variable importance wi,j,t, from equation (2), represents the weight of each variable j

of fund i at time t. This structure gives us a dynamic interpretation of relative variable

importance for each fund at different times. We first average wi,j,t across funds and overtime

to understand the overall variable importance. Figure 2 reports the rank of overall variable

importance in the model. Consistent with the time-series design of the TFT model, the his-

torical alpha is the most prominent variable (28.8%), which suggests the return history itself,

and its correlation with the other macroeconomics variables conveys the most information

in predicting the future performance. The other most important variables are generally in

agreement with the most influential factors mentioned in the shareholder letter, including

the size, value, and momentum factors, and important macroeconomic variables such as SP

500, Default Spread, and Inflation.

[Insert Figure 2 Here]
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We continue to examine the variable importance of the most important variable: histor-

ical alpha (denoted as AlphaImportance). Interestingly, we find that AlphaImportance ap-

pears to have strong seasonality patterns. Within the sample, we aggregate AlphaImportance

across all funds and calendar months of the year and then aggregate the number of earnings-

related announcements of the public companies in each calendar month of the year. Figure

3 plots the relationship between the one-month-ahead Alpha Importance and the number

of earnings announcements in the month. The figure shows that the pattern of one-month-

ahead alpha importance is closely aligned with that of the number of earnings announce-

ments, which implies that our model captures the finding of Pinnuck (2005) that earnings

information explains approximately 25% of a mutual fund’s average monthly abnormal per-

formance.

[Insert Figure 3 Here]

V.B. Model-Based Conditional Performance Persistence

B1. Performance Persistence

Whether mutual fund performance is persistent is one of the major questions in the

mutual funds’ literature. The most influential paper on this subject, Carhart (1997) uses

the net alpha earned by investors to measure managerial skill. It concludes that there is no

evidence of skilled or informed mutual fund managers. Fama and French (2010) use alpha

measures to obtain a cross-sectional distribution of managerial talent and find evidence

of inferior and superior performance in the extreme tails of the cross-section of mutual

fund performance. Berk and van Binsbergen (2015) propose a new value-generated measure

for mutual fund skill and find that the performance is persistent for the long-term. The

model’s interpretability allows us to understand the performance persistence better when

the predictive variable is most informative.
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B2. V.I. Conditional Alpha

The model’s predictive power derives from its ability to capture fund skills embedded in

dynamic strategies. To better understand how mutual funds manager adopts the dynamic

investment strategy, we construct model-based conditional skill measures that depend on the

inferred informativeness of macroeconomic and fundamental variables. In other words, we

calculate the abnormal performance when our model believes a variable is most informative.

Specifically, for each fund i, we calculate the variable importance conditional alpha (V.I.

conditional alpha) as the average Carhart’s four-factor alpha during a variable high period

over the past five years. Variable high period (low period) is defined as the month when the

variable importance of a variable for a fund is higher (lower) than that of 80 percent of the

other funds in the same month. The conditional variables can be separated into two groups:

1) macroeconomic variables, including market return, inflation, term spread, and default

spread, and 2) fundamental variables, including fund past returns and month-of-year.

Table 5 reports the correlation of V.I. conditional alpha on different macroeconomics

and fundamental information. On average, the correlation among the measures is low, which

implies that these measures capture information at a different dimension. For example, the

measure from month of year, which captures the seasonality of the fundamental information

of the funds, has a close-to-zero correlation with the other measures. Some measures are

more correlated as the macroeconomics conditions embedded are overlapping - for example,

the correlation between the measure from the inflation and market return is 0.27.

[Insert Table 5 Here]

B3. Conditional Performance Persistence

We first investigate the performance persistence without conditional on the model in-

formativeness. Following Carhart (1997), we form portfolios of mutual funds on lagged

12-month Carhart’s four-factor alpha and estimate future 12-month Carhart’s four-factor
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alpha on the resulting portfolios. On January 1 of each year, we form five equal-weighted

portfolios of mutual funds using the historical alphas. The portfolios of mutual funds sorted

on 12-month past alphas demonstrate weak variation in mean alphas, as shown in figure 5,

which is consistent with Carhart (1997) that the results of performance persistence are gone

by controlling the momentum effect.

[Insert Figure 5 Here]

We then reform five equal-weighted portfolios of mutual funds using the V.I. conditional

alphas on different macroeconomics and fundamental information over the past five years.

We find that conditional skill measures predict fund performance in future periods when the

conditioning variables are more informative. As shown in figure 6, the mean alphas increase

monotonically and significantly in the future during the high informative period (when the

model recognizes the time in the future is most informative again). Such effects appear

on both macroeconomics and fundamental information. However, a similar pattern does

appear during the low informative period. The results suggest that funds skills may only

be revealed under certain time conditions when the macroeconomics variables are suitable

for their investment strategies or when the fundamental information is more available in the

market.

[Insert Figure 6 Here]

We conduct a panel regression analysis to confirm the hypothesis. We regress the future

12-month Carhart’s four-factor alpha on the V.I. conditional alpha controlling the histor-

ical alpha. Specifically, we estimate the following panel regression, indexed by fund(i)-

month(t), with both year and style fixed effects, and control variables including Historical

Alpha log(TNA)and Fund Flow:

Alphai,t+1 = βV.I. Conditional Alphai,t + γControli,year + αi + αt + ϵi,t (7)
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Table 6 presents the results. First of all, the coefficient of Historical Alpha in column

one from Panel A is significant but small in magnitude. In contrast, the coefficients of

V.I. Conditional Alpha are both economically and statistically significant during a high

informative period for fundamental and macroeconomics variables. The Historical Alpha

becomes insignificant simultaneously. However, such significant effects disappear during the

low informative period. The results confirm Figure 6 that funds performance is persistent

during a high informative period.

[Insert Table 6 Here]

We next investigate whether conditional persistence is a long-term effect. For this pur-

pose, we use the conditional V.I. conditional alpha to predict the future in multiple horizons,

including i) 12-24 months, (ii) 24-36 months, and (iii) 36-48 months. Table 7 presents the

coefficients and the t-statistics of the regression of multi-horizon future fund alpha on the

V.I. conditional alpha during the high informative period in equation 7. The results show

that the effect of conditional persistence is up to at least 48 months. It implies that fund

managers will apply a similar investment strategy when the information becomes informative

again in the future due to the limited attention.

[Insert Table 7 Here]

B4. Conditional Performance Persistence on Macroeconomics Conditions

Though we find the performance is persistent during the high informative period from the

TFT model, similar results could also be found when the actual macroeconomics variables

are high. In other words, can we find that the funds’ performance is also persistent during

the high inflation period? To answer this question, we revisit the regression from equation 7

by adding the Macro Conditional Alpha as control. Macro Conditional Alpha is calculated

as the average Carhart’s four-factor alpha when the macroeconomics variable is higher than

80 percent of the time in the sample from 1990m1 to 2019m12. Table 8 presents the results.
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Even though Macro Conditional Alpha has some limited statistically significant predictive

power of the actual alpha, its predictive direction is inconsistent. For example, funds that

perform well when market returns are high previous tends to perform worse in the future

when the market returns are high again. Overall, the results suggest that funds performance

persists when information is informative to funds, but not the information themselves.

[Insert Table 8 Here]

B5. Conditional Performance Persistence under Berk and Green Model

[Insert Table 9 Here]

Berk and Green (2004) introduces a hypothesis that funds’ performance is hard to persist,

especially when their size becomes too large due to the diminishing return-to-scale in the

mutual fund industry. Are similar diminishing return-to-scale effects apply to our conditional

alpha measure? To test the hypothesis, we separate the funds into five samples based on

funds size and test their conditional performance persist analysis using equation 7. Table

9 presents the results. According to the results, the persistence of model-based conditional

skill measures declines for the largest mutual funds, consistent with the diminishing return-

to-scale hypotheses.

VI. Conclusion Remarks

In this paper, we apply a state-of-the-art deep learning model to understand and pre-

dict dynamic patterns in mutual fund returns. A long-short portfolio based on the model’s

prediction generates a 2.8% annualized Carhart 4-factor alpha. This abnormal performance

is persistent for up to four years. The model improves the prediction of future fund alphas

substantially by increasing the R-squared by more than 25% in a predictive regression that

includes other fund skill measures as well as fund and time fixed effects. The model’s predic-

tive power derives from its ability in capturing fund skill embedded in dynamic strategies.
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We construct model-based conditional skill measures that depend on the inferred informa-

tiveness of macroeconomic and fundamental variables. Such measures are predictive of fund

performance in future periods when the conditioning variables are highly informative. The

conditional performance of these measures are also persistent. Overall, our results suggest

that mutual fund have various specific skills that generate superior returns when the time is

right.
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Appendix A: Definitions of Variables

Variable Definition
Alpha The Fama-French-Carhart four-factor alpha is the intercept of the rolling

window regression of the monthly net return during 24 months on Mktrf,
SMB, HML, and UMD factors, expressed in percentage points.

TNA, Log(TNA) TNA is a a fund’s TNA ($mm) prior to month t. Log(TNA) is natural
logarithm of a fund’s TNA.

Flow The monthly flow for a fund in month t-1, calculated as Flow =
TNAi,t/TNAi,t−1 −1−ri,t, where ri,t is the net return in the prior month,
expressed in percentage points.

Expense The most recent expense ratio prior to month t.
Turnover The most recent turnover ratio prior to month t.
Load Dummy variable if funds have load.
Return Gap The Return Gap measure from Kacperczyk, Sialm, and Zheng (2008).
Cash Holdings The most recent amount of fund invested in cash prior to month t, ex-

pressed in percentage.
Management Fee The most recent management fees prior to month t.
Manager Tenure The number of months since a portfolio manager is hired. If there are

multiple managers for a fund, the longest tenure is used.
Alpha Mean Mean of the alpha in a fund-year.
Alpha Std Standard deviation of the alpha in a fund-year.
Industry production Percentage change of industry production index (INDPRO) from year ago.
Inflation Percentage change of consumer price index for all urban consumers (CPI-

AUCSL) from year ago.
Oil price Percentage change of crude oil prices:West Taxas Intermediate (WTI) from

year ago.
T-Bill yield Percentage change of 3-month treasury bill (TB3MS).
Term spread Percentage change of the difference between 10-year treasury (GS10) and

3-month treasury bill (TB3MS).
Default spread Percentage change of the difference between Baa corporate bond yield

(BAA) and Aaa corporate bond yield (AAA).
Crisis Dummy Crisis dummy defined by NBER.
VIX Percentage change of The CBOE volatility index.
VWRETD Return of total return value-weighted index from CRSP.
SP500 S&P 500 index return.
Mkt-RF Market excess return.
SMB Size factor return in Fama-French five-factor (FF5) Model.
HML Value Factor return in FF5 Model.
RMW Profitablity Factor return in FF5 Model.
CMA Investment Factor return in FF5 Model.
R_ME Value Factor return in Hou, Xue, and Zhang (2015) q-factor (q5) Model.
R_IA Investment factor return in q5 Model.
R_ROE Equity factor return in q5 Model.
R_EG Expected growth factor return in q5 Model.
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(continued)

Variable Definition
Announcement Count % Percentage of the number of the earning announcement of a fund’s

holding in a month as that number of a year.
Alpha Importance Variable importance of the historical alpha in the model.
Macro Importance Sum of the variable importance of macroeconomics in the model.

The variables include Industry Production, Inflation, Oil Price, T-
Bill, Term Spread, Default Spread, Crisis Dummy, VIX, VWRETD,
SP500, Mkt-RF, SMB, HML, RMW, CMA, R_ME, R_IA, R_ROE,
R_EG
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Figure 1: Basic Structure of Temporal Fusion Transformer (TFT) Model

This figure plots the basic structure of the TFT model. The model is multi-horizon forecasting
with dynamic, deterministic, and static variables with exportable variable importance and attention
outputs.
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Figure 2: The Relative Importance of Variables in the Model

The figure plots the relative importance of all variables of the TFT model from 1990m1 to 2009m12.
The relative importance of each variable is averaged first across funds and then for all months and
measured in percentage points. All attributes are defined in Appendix A.
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Figure 3: Variable Importance of Returns and Frequency of Earnings Announcements

This figure plots the relationship between the one-month ahead variable importance of mutual
fund risk-adjusted returns, or alphas, and the number of earnings announcements in the month.
The variable importance of mutual fund alphas is first averaged across all funds and then average
across all years in the sample for each calendar month of the year. The frequency of earnings
announcements is the total number of public companies announcing earnings in each calendar
month of the year in our sample.
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Figure 4: The Times Series of Attention in the Model

This figure plots the average attention of the model during our sample period. Attention for each
calendar month is defined as the average attention the model assigned to that month across all
funds and forecast horizons. Sections marked as blue denote the crisis periods defined by NBER.
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Figure 5: Unconditional Performance Persistence

This figure plots the confidence intervals of subsequent one-year performance by the rank average
historical alpha Carhart’s four-factor alpha over the past 12 months. In each calendar year from
2010 to 2019, funds are ranked into quintile portfolios based on historical alpha.
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Figure 6: Conditional Performance Persistence

This figure plots the confidence intervals of subsequent one-year performance by the rank V.I.
conditional alpha under high and low informative period of macroeconomics and fundamental
information. V.I. conditional alpha is calculated as the average Carhart’s four-factor alpha during
a variable high informative period over the past five years. Variable high (low) informative period
is defined as the month when the variable importance of a variable for a fund is higher (lower)
than 80 percent of the other funds in the same month. In each calendar year from 2010 to 2019,
funds are ranked into quintile portfolios based on a variable V.I. conditional alpha. The future
time period is separated into the high and low informative period. The x-axis represents the rank
of the V.I. conditional alpha. The y-axis represents the Carhart’s four-factor alpha.
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Table 1: Summary Statistics

This table provides summary statistics. Fund returns and characteristics are based on the sample
of active US domestic equity mutual funds from 1990 to 2019. Macro-level variables are calculated
monthly based on information available in the previous month. Variables are defined in Appendix
A.

Variables Mean Median Std P25 P75
Fund Return & Characteristics

Alpha -0.12 -0.11 -0.11 -0.97 0.74
Flow 1.75 -0.20 -0.20 -1.34 1.49
TNA 1,185.01 195.90 195.90 47.30 815.90
Load 0.56 1.00 1.00 0.00 1.00
Cash 5.00 2.42 2.42 0.70 5.49
Expense 1.20 1.15 1.15 0.90 1.46
Management fee 0.58 0.72 0.72 0.50 0.88
Turnover 0.92 0.62 0.62 0.33 1.07
Total number of funds 3717

Macro Variables
Industry production 1.90 2.66 2.66 0.71 4.03
Inflation 2.45 2.49 2.49 1.70 3.07
Oil price 8.73 5.20 5.20 -12.28 26.67
T-Bill yield 3.74 0.00 0.00 -3.33 3.85
Term spread 0.01 -2.00 -2.00 -15.00 14.00
Default spread -0.04 -1.00 -1.00 -4.00 4.00
Crisis Dummy 0.09 0.00 0.00 0.00 0.00
VIX 1.10 -1.38 -1.38 -8.89 6.79
Value-weighted return 0.87 1.34 1.34 -1.69 3.53
S&P 500 return 0.71 1.11 1.11 -1.74 3.25
Market risk premium 0.67 1.18 1.18 -1.90 3.37
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Table 2: Comparisons of Performances of Machine Learning Models

This table reports the out-of-sample R2
OOS based on out-of-sample predictions of different models:

(i) TFT model, (ii) OLS model, (iii) ridge OLS regression model, (iv) decision tree model, (v)
AdaBoost model , (vi) random forest model, (vii) Neural network with two hidden layers (32 and
16 neurons), and (viii) Neural network with three hidden layers (32, 16, and 8 neurons).

TFT OLS Ridge Decision Tree AdaBoost Random Forest NN2 NN3
0.3584 0.0272 0.0052 0.0039 0.0486 0.0363 0.0749 0.0392
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Table 3: Regression Analysis of Model-Predicted Fund Performance

This table reports the regression of future fund alpha on the predicted alpha from the TFT model,
historical alpha over the previous 12 months, return gap, and other fund characteristics. Variables
are defined in Appendix A. The t-statistics, in parentheses, are based on standard errors clustered
by funds. ***, **, * denote statistical significance at the 0.01, 0.05, and 0.10 levels, respectively.

(1) (2) (3) (4) (5) (6)
Dependent Variables Alpha

Predicted Alpha 0.510*** 0.427*** 0.434*** 0.451*** 0.439*** 0.454***
(11.25) (9.48) (9.60) (9.78) (10.13) (10.36)

Historical Alpha -0.014*** -0.012***
(-3.46) (-3.04)

Return Gap -3.633 -3.663
(-0.89) (-0.90)

Log (TNA) -0.000 -0.123*** -0.131*** -0.132*** -0.138*** -0.139***
(-0.12) (-7.98) (-8.52) (-8.55) (-9.31) (-9.29)

Fund Flow 0.395* -1.154*** -1.249*** -1.231*** -1.298*** -1.281***
(1.87) (-4.22) (-4.58) (-4.53) (-4.97) (-4.90)

Cash Holdings -0.001 -0.001 -0.000 -0.001 -0.001 -0.001
(-1.03) (-0.51) (-0.31) (-0.33) (-0.51) (-0.52)

Expense Ratio -8.534*** -8.697 1.025 1.180 -5.322 -5.126
(-4.36) (-0.81) (0.09) (0.11) (-0.52) (-0.49)

Management Fee 0.021 -0.083 -0.056 -0.058 0.000 -0.001
(0.95) (-1.21) (-0.86) (-0.88) (0.01) (-0.02)

Turnover Ratio -0.019** -0.013* -0.009 -0.010 -0.010 -0.010
(-2.50) (-1.81) (-1.33) (-1.34) (-0.59) (-0.58)

Fund Fixed Effect No Yes Yes Yes Yes Yes
Year Fixed Effect Yes No Yes Yes Yes Yes
Observations 101,076 101,076 101,076 101,076 96,240 96,240
Adjust R-squared 0.007 0.008 0.010 0.010 0.011 0.011
Adjust R-squared
Contribution by
Predicted Alpha

45.04% 26.58% 20.10% 20.48% 19.72% 20.28%
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Table 4: Persistence of Fund Performance

This table reports the results of the persistence analysis of the TFT model. It presents the different
prediction horizons of post-ranking monthly basis points of alphas from net fund returns for funds
sorted into deciles portfolios based on TFT models. The prediction horizon include: (i) 0-12
months, (ii) 12-24 months, (iii) 24-36 months, (iv) 36-48 months, and (v) 48-60 months. The
results reflect 84 individual monthly observations over the 2012m1-2019m12 out-of-sample period.
The t-statistics, in parentheses, are based on standard errors clustered by funds. ***, **, * denote
statistical significance at the 0.01, 0.05, and 0.10 levels, respectively.

Prediction Horizon
0-12 months 12-24 months 24-36 months 36-48 months 48-60 months

Bottom -25.29 -19.47 -22.79 -22.44 -9.17
2 -20.81 -17.90 -19.34 -19.13 -15.94
3 -16.79 -16.46 -19.94 -20.84 -13.51
4 -17.97 -14.14 -20.53 -18.39 -13.94
5 -10.84 -12.82 -14.70 -15.54 -8.55
6 -12.88 -12.74 -11.81 -13.16 -13.77
7 -11.53 -12.64 -9.94 -11.99 -13.80
8 -7.84 -11.01 -8.02 -8.42 -8.02
9 -6.32 -6.78 -5.14 -4.67 -2.68
Top -2.05 -2.19 2.00 -0.23 -4.35

Top-Bottom 23.24** 17.27* 24.79** 22.21* 4.82
t-Statistic (2.51) (1.81) (2.37) (1.91) (0.34)
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Table 5: Correlation of V.I. Conditional Alpha

This table reports the correlation of V.I. conditional alpha on different macroeconomics and fundamental information. V.I. conditional
alpha is calculated as the average Carhart’s four-factor alpha during a variable high informative period over the past five years. Variable
high (low) informative period is defined as the month when the variable importance of a variable for a fund is higher (lower) than
that of 80 percent of the other funds in the same month.

Market Return Inflation Term Spread Default Spread Alpha Importance Month of Year
Market Return 1.00
Inflation 0.27 1.00
Term Spread -0.44 -0.15 1.00
Default Spread 0.10 0.21 -0.05 1.00
Alpha Importance -0.10 -0.09 0.24 -0.01 1.00
Month of Year 0.09 0.02 0.03 -0.04 -0.04 1.00
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Table 6: Conditional Performance Persistence

This table reports the regression of future fund alpha on the V.I. conditional alpha. V.I. conditional alpha is calculated as the average
Carhart’s four-factor alpha during a variable high informative period. Variable high (low) informative period is defined as the month
during a variable high informative period over the past five years. Variable high (low) informative period is defined as the month
when the variable importance of a variable for a fund is higher (lower) than that of 80 percent of the other funds in the same month.
The regressions are grouped into the high and low informative period. Control variables include historical alpha, size, and flow. The
t-statistics, in parentheses, are based on standard errors clustered by funds. ***, **, * denote statistical significance at the 0.01, 0.05,
and 0.10 levels, respectively.

Panel A: Fundamental Conditions

(1) (2) (3) (4) (5)
Target Month of the Year

Variables Unconditional High Low High Low

V.I. Conditional Alpha 0.321*** -0.020*** 0.138*** 0.010
(13.88) (-2.60) (5.72) (1.22)

Historical Alpha 0.066*** 0.036 0.045*** 0.022 0.065***
(4.56) (0.97) (2.69) (0.84) (3.28)

Log (TNA) 0.000*** 0.000*** 0.000*** -0.000 -0.000
(6.94) (12.01) (13.24) (-0.24) (-1.20)

Flow 0.001 -0.031*** -0.002** 0.003 0.000
(1.12) (-9.73) (-2.36) (1.26) (0.42)

Time Fixed Effect Yes Yes Yes Yes Yes
Style Fixed Effect Yes Yes Yes Yes Yes
Observations 96,088 18,784 65,063 18,804 66,859
adjust R-squared 0.0433 0.206 0.0797 0.168 0.0484
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Panel B: Macroeconomics Conditions

(1) (2) (3) (4) (5) (6) (7) (8)
Market Return Term Spread Inflation Default Spread

Variables High Low High Low High Low High Low

V.I. Conditional Alpha 0.519*** -0.075*** 0.409*** -0.065*** 0.277*** 0.007 0.126*** 0.001
(23.92) (-6.96) (13.64) (-6.76) (12.90) (0.85) (4.03) (0.08)

Historical Alpha -0.008 0.047** 0.021 0.097*** -0.018 0.056*** 0.013 0.069***
(-0.25) (2.53) (0.67) (4.39) (-0.65) (3.20) (0.48) (3.58)

Log (TNA) 0.000*** 0.000*** -0.000 0.000*** 0.000** 0.000*** 0.000*** 0.000
(10.71) (12.19) (-0.61) (6.48) (2.53) (3.79) (8.55) (1.25)

Flow -0.015*** -0.009*** -0.004** 0.009*** -0.011*** -0.004*** -0.005 0.002*
(-4.67) (-9.53) (-2.38) (7.82) (-4.30) (-5.07) (-1.47) (1.84)

Time Fixed Effect Yes Yes Yes Yes Yes Yes Yes Yes
Style Fixed Effect Yes Yes Yes Yes Yes Yes Yes Yes
Observations 18,924 73,262 18,816 67,228 18,703 69,489 18,846 69,741
adjust R-squared 0.240 0.0624 0.211 0.0929 0.242 0.0543 0.172 0.0512
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Table 7: Conditional Performance Persistence in Long Term

This table reports the coefficients and the t-statistics of the regression of future fund alpha on the
V.I. conditional alpha during the high informative period in multiple prediction horizon, including
i) 12-24 months, (ii) 24-36 months, and (iii) 36-48 months. V.I. conditional alpha is calculated as
the average Carhart’s four-factor alpha during a variable high informative period over the past five
years. Variable high (low) informative period is defined as the month when the variable importance
of a variable for a fund is higher (lower) than 80 percent of the other funds in the same month.
Control variables include historical alpha, size, and flow. The t-statistics, in parentheses, are based
on standard errors clustered by funds. ***, **, * denote statistical significance at the 0.01, 0.05,
and 0.10 levels, respectively.

Market Return Term Spread Inflation Default Spread Target Month of the Year
High High High High High High

12-24 Months
0.430*** 0.337*** 0.196*** 0.097*** 0.242*** 0.105***
(20.29) (12.31) (10.26) (3.33) (10.23) (5.02)

24-36 Months
0.339*** 0.293*** 0.169*** 0.101*** 0.201*** 0.098***
(13.50) (10.54) (8.96) (3.81) (8.36) (5.21)

36-48 Months
0.300*** 0.261*** 0.127*** 0.091*** 0.152*** 0.073***
(15.04) (10.19) (8.23) (4.59) (6.71) (4.01)
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Table 8: Conditional Performance Persistence on Macro Conditional Alpha

This table reports the regression of future fund alpha on the V.I. conditional alpha controlling the macro conditional alpha. V.I.
conditional alpha is calculated as the average Carhart’s four-factor alpha during a variable high informative period over the past five
years. Variable high (low) informative period is defined as the month when the variable importance of a variable for a fund is higher
(lower) than that of 80 percent of the other funds in the same month. The macro conditional alpha is calculated as the average
Carhart’s four-factor alpha when the macro variable is higher than 80 percent of the time in the sample from 1990m1 to 2019m12.
The regressions are grouped into the high informative period and the low informative period. Control variables include historical
alpha, size, and flow. The t-statistics, in parentheses, are based on standard errors clustered by funds. ***, **, * denote statistical
significance at the 0.01, 0.05, and 0.10 levels, respectively.

(1) (2) (3) (4) (5) (6) (7) (8)
Market Return Term Spread Inflation Default Spread

Variables High Low High Low High Low High Low

V.I. Conditional Alpha 0.518*** -0.077*** 0.422*** -0.063*** 0.274*** -0.006 0.110*** -0.006
(23.76) (-7.24) (13.65) (-6.45) (12.49) (-0.75) (3.40) (-0.83)

Macro Conditional Alpha -0.196* -0.052 -0.253** -0.083 0.037 0.420*** 0.132** 0.149***
(-1.84) (-1.00) (-2.48) (-1.46) (0.35) (5.42) (2.13) (2.94)

Historical Alpha 0.060** 0.109*** 0.062* 0.143*** -0.000 0.128*** 0.051* 0.119***
(2.00) (4.92) (1.74) (6.19) (-0.00) (6.65) (1.88) (6.16)

Log (TNA) 0.000*** 0.000*** -0.000 0.000*** 0.000** 0.000*** 0.000*** 0.000
(10.58) (12.22) (-0.14) (6.19) (2.48) (2.88) (8.34) (0.57)

Flow -0.015*** -0.009*** -0.004** 0.009*** -0.012*** -0.005*** -0.006* 0.001
(-4.79) (-9.84) (-2.50) (7.95) (-4.38) (-6.03) (-1.67) (1.16)

Time Fixed Effect Yes Yes Yes Yes Yes Yes Yes Yes
Style Fixed Effect Yes Yes Yes Yes Yes Yes Yes Yes
Observations 18,890 73,180 18,787 67,164 18,688 69,422 18,829 69,665
adjust R-squared 0.241 0.0632 0.212 0.0935 0.242 0.0564 0.172 0.0523
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Table 9: Conditional Performance Persistence by Size

This table reports the regression of future fund alpha during the high informative period on the V.I. conditional alpha grouped by
fund size. V.I. conditional alpha is calculated as the average Carhart’s four-factor alpha during a variable high informative period
over the past five years. Variable high (low) informative period is defined as the month when the variable importance of a variable for
a fund is higher (lower) than that of 80 percent of the other funds in the same month. Control variables include historical alpha, size,
and flow. The t-statistics, in parentheses, are based on standard errors clustered by funds. ***, **, * denote statistical significance
at the 0.01, 0.05, and 0.10 levels, respectively.

Group Market Return Inflation Term Spread Default Spread Alpha Importance Month of Year
High High High High High High

5 0.468*** 0.308*** 0.324*** 0.105** 0.244*** 0.242***
(9.83) (6.46) (5.34) (2.32) (5.06) (4.82)

4 0.511*** 0.244*** 0.468*** 0.137 0.275*** 0.117***
(10.93) (5.29) (9.56) (1.60) (4.55) (2.88)

3 0.517*** 0.347*** 0.460*** 0.103* 0.359*** 0.158***
(14.85) (6.90) (11.00) (1.90) (7.46) (4.00)

2 0.496*** 0.236*** 0.315*** 0.088* 0.355*** 0.069
(10.36) (5.37) (4.40) (1.81) (8.07) (1.60)

1 0.524*** 0.213*** 0.386*** 0.072 0.315*** -0.016
(12.59) (5.28) (6.83) (1.64) (7.31) (-0.29)
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